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Simulation of Non-stationary, Non-Gaussian Water
Levels on the Great Lakes

Todd L. Walton Jr. 1,M. ASCE and Leon E. Borgman 2 ,M. ASCE

INTRODUCTION

Non-stationary non-Gaussian time series having correlation structure are common

to the coastal engineering field. Often one does not know much about the underlying

process or processes causing the series to vary as it does and hence cannot predict

its future values with any certainty. Future values of the series can run a very

different course than past values and hence a direct application of past events to

future scenerios is not always a safe course of action. To do proper engineering

design within a probabilistic framework it is safer to extract as- much-pattern from

the process as feasible including extremal behavior, and then to prepare various

possible future scenerios of the process for design purposes by some type of stochastic

simulation. It should be emphasized that these are not deterministic predictions of

what will occur at a particular time in the future. Rather, the set of such scenerios

represent typical future conditions which the design or operation must withstand.

The design should be examined relative to each such scenario to establish a range

of response from "worst" to "best".

This paper will present one approach to simulation for a non-stationary non-

Gaussian time series of hourly water levels on the Great Lakes. An earlier paper

(Walton (1989)) discussed an autoregressive simulation approach in the time do-
1 Hydraulic Engincer,U.S. Army Corps of Engineers, Coastal Engineering Research Center,

U.S.A.B. Waterways fixperil pnt Station, Vicksburg,MS.2 Professor, Statistics Department, University of Wyoming, Laraime, Wyomng
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main of the pseudocyclic behavior of the monthly mean water levels in the Great

Lakes. One underlying need for dynamic simulation of water levels is to drive a cross

shore sediment transport numerical model (see, for example, Kraus and Larson(1988)

or Kriebel and Dean(1985)) for assessment of erosion volume versus frequency-of-

occurrance curves. The dynamical aspects of the water level records are important

to determination of such erosion volume/frequency-of-occurrance curves. As an ex-

ample, a storm having a large peak water level but short duration can produce less

erosion than a storm having a lower peak water level but longer duration.

Examples of the processes to b. simulated herein are provided in Figs.1 and 2 which

represent the average hourly water levels for the 1978 fall season (October chrough

December) at two sites: Holland, Michigan; and Erie, Pennsylvania. These hourly

water levels were measured at National Oceanic and Atmospheric Administration

(NOAA) Great Lake water level gage sites, numbers 7031 and 3038, respectively,

and were provided courtesy of the NOAA Great Lakes Acquisition Unit in Rockville,

Maryland.

It is obvious from the time series plots that the short term (hourly) lake level is

not stationary as evidenced by the heteroscedastic nature of the series fluctuations

about a changing mean level. This complex structure of water levels is due to

the underlying non-stationary forcing functions of wind, barometrik pressure, and

precipitation, which drive the water levels from equilibrium. The complexity of the

water level series is also due to the complex response of the Great Lakes basins to

the forcing functions. One such basin response to extreme event forcing function is

:A .:ng w.ich is apprnt in the water level re .ord after an initial extrerme event

water level shock.



3

The non-Gaussian nature of these short term water levels is best seen in histograms

of the water levels Figs. 3 and 4. These histograms depart from the Gaussian dis-

tribution as might be expected considering the numerous complex forcing functions

which drive the Great Lakes water levels.

METHODOLOGY

For simulation of the present water levels, it is apparent from the above dis-

cussion that the simulation methodology utilized will have to deal with the non-

stationary character of the data. In the present procedure this is accomplished via

filtering/detrending/normal scores transformation procedures to reduce the data to

stationarity, followed then by Gaussian correlated simulation, and, subsequently, by

inverse operations to recapture the non-stationary non-Gaussian trending character-

istics of the original data. The procedure deals with non-Gaussian data distribution

functions of a varying unknown nature with tails representative of the measured

extremes through a robust tail fitting procedure coupled with use of the empirical

distribution function and a bootstrapping procedure for simulation purposes.

As a basis for later comparison of the simulated data to the measured data, the

following four plots are considered: the time series plot (shown in Figs. 1 and 2);

the histogram ( Figs. 3 and 4); a spectral density plot, and an autocorrelation plot.

Autocorrelation plots for the 1978 fall hourly water levels for the Holland and Erie

sites are provided in Figs. 5 and 6 xespectively. Spectral density plots for the same

data as smoothed via a Gaussian window function are provided in Figs. 7 and 8.

The entire procedure for simulating future scenerios of water levels consists of a

pattern analysis procedure for reduction of data to stationary Gaussian correlated



4

random noise coupled with a simulation procedure for reconstructing future scenerios

of water levels from simulated Gaussian random noise having the same underlying

correlation structure as the original series. The two part analysis procedure is best

described via block diagram as in Fig 9. A step by step discussion of the procedure

follows.

Stationarity Procedures

The data is first low pass filtered to determine a time varying mean and time vary-

ing standard deviation using a Gaussian shaped smoothing or convolving function

of the form:
w() = exp(7-) (1)

C

where c is a constant to adjust the width of w(r). The Fourier transform of w(r) is

given as:

W(f) = w(r) exp (-i2 rfr)6r (2)

= exp (-rf2 c 2) (3)

hence w(O) = 1/c and W(O) = 1.

The effective width of w(r) is defined as the width of a square pulse which has

height w(O) and area equal to W(O) (i.e., the area under w(r)). Thus, the vaiue "C"

may be identified as the effective width of w(r).

The filtered trend vtrend(t) is defined in the continuous time domain as a convo-

lution of the signal v(t) with the Gaussian smoothing function w(-r):

(00
vtrend(t) =J w(r)v(t - r)'r (4)
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where w(r) is given a chosen effective width. Let Vtrend(f) be the Fourier transform

of vt'end(t), and V(f) the Fourier transform of v(t).

Vtrend(f) = JP{vtrend(t)} = j vtrend(r)exp(-i2rfr)6r (5)

V(f) = .1{v(t)} = f v(r) exp (-i2rfr)6r (6)

Since convolution in the time domain is equivalent to multiplication in the fre-

quency domain, we then have

Vtrend(f) = W(f) .V(f) (7)

It is convenient to make these operations in frequency domain to gain large savings

in computer processing time possible through the use of the fast Fourier transform

algorithm.

In practice, only a finite piece of data is available and it is natural to revert to

discrete Fourier transform (DFT) definitions. In the discrete time domain the filtered

trend vtrend(t) is defined as:

N-I
vtrend(n 6 t) = At E w(k A t)v((n - k) A t) (8)

k=O

where the sequence v(n A t); n=O,...,N-1 is made circularly periodic, with period N

for times outside the defined data. That is;

v((n - k) A t) = v((N + n - k) A t) (9)

v(N A t) = v(O) (10)

This ariPcia periodicity cfft.s lrend(n A t.) about, one effective width it the

beginning and end of the iine -series. The one effective width arises because the



standard deviation of the Gaussian shape of w(-') is 'hence three standard

deviations are approximately equal to one effective width, "c". The Gaussian curve

approaches zero at three standard deviations L .in the mean.

Using discrete Fourier transforms with

N-I -i2rmn
Vtrend(mA f)=At vtrend(nAt)exp( N (11)

n0

N-I -i2,rrnm
V(mAf)=AtEv(nAt)exp( N (12)

n=O

W -i -i27rmn
W(mAf)= &t E w(nAt)exp( -N (13)

n=O

where vtrend(n At), v(n At) and w(n At) are all made circularly periodic, the trend

computation is made in the discrete frequency domain by the following equation:

Vtrend(m A f) = W(m A f) " V(m A f) (14)

where

1f151(N A t) (15)

and the discrete time equivalent of Eq. 3 is

W(m A f) a' exp (-7r(m A f)' 2 ) (16)

Letting the quantity EW be the number of At increments in the effective width c,

so that

c = (EW)A t (17)

it follows that

w(rn & f) exp t2 )(18)
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since

(19(AIt)(Af)-- = (19)

Calculations are made very rapidly in the frequency domain using fast Fourier trans-

form (FFT) techniques (Blahut,(1985)) and the resulting time series vtrend(n A t);

n=0,...,N-1 is found by inverse fast Fourier transform (IFFT). In actual simulations

the vtrend(n A t) series should be made longer than needed such that one effective

width can be removed at the beginning and the end of the series due to the imposed

circular periodicity assumptions as noted previously.

The local variance can be defined in an analogous manner in the discrete time

domain as a convolution of the instantaneous variance with the same smoothing

filter w(r):
N-1

vvar(n A = w(k A t)ivar((n - k) A t) (20)
k=O

where the instantaneous variance is defined as

ivar(n A t) = (v(n A t) - vtrend(n A ))2  (21)

The local variance can then be found as before in the frequency domain by a mul-

tiplication of the Fourier transform of w(n A t) by the Fourier transform of the

instantaneous variance. A different effective width can be used for the variance

filtering operation if so desired. On inverse Fourier transform, the time donain

standard deviation series vsd(n A t); n=O,...,N-1 can be found as

vsd(n A t) = Vvvar(n A t) (22)

Again as in the case of the vtrend series, in actual simulations the vsd(n A I) series

should be made longer than needed such that at least one effective width can be
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discarded at the beginning and end of the series. In this regard the longer of the

two effective widths (trend and variance filter effective width) should be used as the

basis for discarding information in order to keep the two series properly aligned.

The required stationary residuals are then found as;

vresid(n A t) = v(n A t) - vtrend(n A t) (23)
vsd(n A t)

These residuals will locally have a mean of zero and standard deviation of unity.

Normalization Procedure

The residuals vresid(nAt) are then order ranked by size (smallest to largest) with

the integer series rank(n A t);n=O,...,N-1 being the rank number series where each

value of rank(n A t) corresponds to the rank number of vresid(n A t). Hence the

series rank(n A t);n=O,...,N-1 ranges between 1 and N. An estimate of the distribu-

tion function of the detrended and normalized (mean zero, variance one) data after

ranking may be stated as:
F(vresid(n A t)) = rank(n A t) (24)

N+I

Each vresid(n A t) is thus replaced by a standardized normal value "zscore(n A t)"

having the ranking associated with the empirical probability distribution fractile

value -" This transformation is accomplished via the following equation:
N+1

zscore(n At)= - rank(n A t) (25)

where V -() is the inverse normal distribution function which can be solved for

numerically (Zelen and Severo(1964) eq. 26.2.23).
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Standardization Procedure

As a final, usually very small adjustment, the zscore(n A t); n=O,...,N-1 series is

then restandardized to a zero mean and unit variance via

z(n A t) = zscore(n A t) - zbar (26)
zsd

where zbar and zsd are the mean and standard deviation of the zscore series.

Spectrum Calculation

The "target" spectrum for simulation purposes is a smoothed version of the line

spectrum of the series z(n A t);n=O,...,N-1. The discrete Fourier transform (DFT)

of the z(n A t);n=O,...,N-1 series is:

N-1 -i2rmn
Z(mAf)=At E z(nAt)exp( N ) (27)

and the spectral line at f = is
Sz(m A f) = I Z(m A f) 12  (28)

NAt

The spectral lines are smoothed over frequency in order to obtain adequate spec-

tral density estimates. This is achieved with Gaussian smoothing in the frequency

domain via the convolution operation:

N-I expw ( 2 )
Sbar(m A f) = E} Sz((m - k)A f) (29)

k=O

For numerical efficency this operation is actually performed in the lag time domain

via the equation

sba,(n At) = sz(n A t). N (3)N(3)
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where sz(n At) is the inverse discrete Fourier transform (IDFT) of Sz(m A f), and

EW is an effective width as before where EW =-2 = ciN A t. Returning to the

frequency domain, the smoothed "target" spectrum to be used in the simulation

process ,Sbar(m A f), is the DFT of sbar(n A t).

Simulation Spectrum Generation

The smoothed "target" spectrum is then standardized to unit area to require

N-1

ESbar(miA f) A f = 1.0 (31)
M=O

Simulation is based on the random behavior of a real Gaussian covariance stationary

periodic (period = N A t) sequence zsim(n A t);n=0,...,N-1 with a zero mean and

variance equal to one. The DFT of such a random series is

N-I -i2rmn N(32)
Zsim(m A f) = Un - iVm = At F zsim(n A t) exp ( N N for 0<m< -3

n=O

where Urn and V.. are independent, normally distributed random variables with

zero mean and variance given by Borgman(1973,1982,1990 in press) and Miller and

Borgman(1985) as:

Variance(Umn) = Varianee(Vn) = N A tSzsim(m A f) if 0 < n < L (33)22

V aiance(Umn ) = N A tSzsim(O) if m = 0
,NAfx N

Variance(Um) = N A tSzsim( 7 if m =

N
Variance(Vmn) = 0 if m = 0,

where Szsim(m A f) is the desired line spectrum to simulate. Foi E < m < N,

V.m = UN-r and Vm = -VN . (34)
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The frequency series Uo, U1 , V',...._ 1 , Vm_, UN is thus generated by generat-

ing N independent standard Gaussian variates Z1 , Z 2 ,.... ZN and then calculating the

frequency series in accordance with Szsim(m A f) = Sbar(m A f):

Uo = /N A tSbar(O)Zl (35)

U = VN A tSbar(Af)/2Z2

VI = V N A tSbar(Af)/2Z

U2 = ,IN A tSbar(2 A f)/2Z4

V2 = JVN A tSbar(2 A f)/2Zs

etc.

U - 1 = jN A tSbar(U(. 1) A f)/2ZN-. 2

V' I= VN A tSbar(( - 1) A f)I2ZN..1

U = N A tSbar( A f)ZN

The simulated Gaussian time series with zero mean and unit variance zsim(n A

t);n=O,...,N-1 is then generated via the IDFT of the series Zsim(m A f) = U -

iV,;m=O,...,N-1 with the equation:

N-i i27rmn
zsim(n A t) = Af E(Um - iV) exp ( N (36)

m=O

Destandardization Procedure

After generating the zero mean, unit variance time series zsim(n A t);n=O,...,N-i,

it is rescaled with the zscore(n A t);n=O,...,N-1 series mean "zbar" and standard
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deviation "zsd". This is done via the equation

zscosim(n A t) = zsd. zsim(n A t) + zbar (37)

to create a simulated Gaussian time series zscosim(n A t);n=0,...,N-1 having the

same correlation structure, mean, and standard deviation, as the zscore(nAt);n=O,...,N-

i series.

Distribution Function Transformation

At this point the Gaussian simulated series zscosim(n A t);n=O,...,N-1 is trans-

formed back to the probability distribution function of the detrended series to obtain

the resulting non-Gaussian trended simulated time series vsimres(nAt);n=O,...,N-1.

This is done via back interpolation using the empirical distribution function in the

central portion of the distribution along with a functional form for the tails of the

distribution to make the distribution function more "robust". The back interpola-

tion from the simulated normal score time series zscosirn(n A t) is achieved from

inverting

F(vsimres(n A t)) = .1(zscosim(n A t)) (38)

where b(z) is the distribution function for a standard normal probability law. This

may be written as:

vsimres(n A t) -P-('X(zscosim(n A t))) (39)

where !r10 is the inverse empirical probability distribution function. In practice,

the step

u = 4(zscosi,,1(,1 A t)) (40)
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is performed with an algorithm from Zelen and Severo(1964) (eq. 26.2.17) and then

the operation

vsimres(n A t) = F-1 (u) (41)

is achieved by direct interpolation within the ranked detrended original data, at

least for 1/(N + 1) _ u < N/(N + 1).

If u < 1/(N+ 1) (lower tail) or u > N/(N + 1) (upper tail), another procedure was

selected. It was found that the upper and lower tails of many common probability

laws such as the normal, exponential, gamma, and lognormal could be fitted either

exactly or with high accuracy of approximation by a representation of the form:

v = z, + (a + bT)C for upper tail (42)

or

v = z1 - (a + bT)C for lower tail

where

T = /-2/n(1 - U) upper tail unbounded above (43)

T = U - U1 upper tail bounded above

T = V/-'/'(U) lower tail unbounded below

T = U1 - U lower tail bounded below

The constants a,b,c, and z, are based on extremal values of the F(vresid(n A t))

empirical distribution function estimate.

For the upper tail unbounded above, let zj < Z2 < z3 be selected values within the

upper tail of the ranked vresid(nAt) values, and ul < U2 < U3 be the corresponding

values of rank/(N+1).
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If tle upper tail is bounded by some value ztp, then set z.1 = ztop and u3 = 1.0.

The other two sets of (z,u) are obtained as before.

For the lower tail unbounded below, the-procedure is very similar. Let z,3 < z2 < z1

be selected within the lower ranked values of w'esid(n At) and UZ < u2 < ul be the

rank/(N+l) values associated with them.

If the lower tail is bounded below by Zbogttm, then set z3 = zbotto and U3 = 0.0.

The other two pairs of (z, it) are picked as for the unbounded below case.

The z, in the previous tail representation formula coincides exactly with the zj

values assigned for each tail here. The ul values needed for the bounded cases in

each tail are the corresponding ul values selected here.

This leaves the a,b,and c values which can be computed by:

=ln( )
____ (44)

tn(b) -n - In I - T (45)
C

a -bT (46)

where T1 is the value of T computed from ul in the previous definition of T.

The direct empirical interpolation is performed for lowertailu, < u < uppertailul,

while the tail approximation formulas are used for values outside this interval.

Although the upper and lower tail represent a very small fraction of the simulated

values, they are important in many engineering problems where extremes are signif-

icant. In most published "bootstrap" procedures, the simulations are restricted to

lying between the maximum and minimum of the original data. In predicting the

future, these methods appear artificial, since it seems obvious that extreme values
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outside the historical data base may occur eventually unless there is some sort of

finite bounds due to the physical constraints.

The procedure presented represents a type of tail-extended bootstrap simulation

generalized with a normal score transformation. A great deal of research and com-

parison with common population probability laws was involved in selecting the tail

formulation recommended above (Borgman,(1989)). It appears reasonable under

circumstances examined to date.

Nonstationarity Transformation

The last transformation necessary to produce a simulated series vsim(nAt);n=O,...,N-

1 is an inverse transformation using the computed vtrend(n At) and vsd(nAt) series.

The final simulated non-stationary, non-Gaussian time series is found as;

vsim(n A t) = -d(n A t) . vsimres(n A t) + vtrend(n A t) (47)

This operation is performed in the time domain.

RESULTS

Results of the simulation procedure for one simulation run for the Erie site is

presented in time series plot, Fig. 10, histogram Fig. 11, autocorrelation Fig.12, and

smoothed spectrum (via a Gaussian window) Fig.13. These figures can be compared

to the actual series plots in Figs.2,4,6, and 8. The low pass trend and standard

deviation series for the Erie site are shown in Fig.14 and Fig.15 respectively. The

effective filter width utilized for the trend series was 20 hours while the effective filter

width utilized for the standard deviation series was 50 hours. As the effective width
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chosen is somewhat of an ad hoc procedure, no justification for these choices of filter

width i-- given. A natural extension of these procedures is to analyze and synthesize

the smoothing trend and local standard deviation series in a similar manner rather

than use the duterministic output directly from the data analysis. This would not

involve any new theory but rather would introduce a hierarchy of simulations. It is

not being done here because it would introduce unnecessary complexity in explaining

the method.

Results of the simulation procedure for three simulation runs at the Holland site

are provided in Figs. 16 thru 19 for the time series, histogram, autocorrelation

and smoothed spectra (smoothed via a Gaussian window). The low pass trend and

standard deviation series for this site were. computed with the same effective filter

width as the Erie site. Results are shown in Figs. 20 and 21.

CONCLUSIONS

The results of the procedure seem to "mimic" the original data in a reasonable

fashon while still incorporating process noise consistant with the original series. The

method can analyze and simulate a large time series extremely fast. The method

allows for exact duplication of the univariate probability law contained in the data

behavior and is thus capable of producing non- gaussian process behavior related

to skewness and higher order moments. It is understood that some of the higher

order bivariate moments may not be properly reproduced by this transformation to

gaussian (and the inverse transformation). Applications for which the higher order

bivariate (trivariate, etc.) moments are important should consider other techniques,

perhaps based on Volterra series. The method also allows for the treatment of



17

non-stationarity in mean and variance either through including the bursts of non-

stationarity of data in deterministic fashion or through a hierarchy of simulations as

suggested in the text.
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APPENDIX II. NOTPTION

a,b = empirically fit constants;

c = Gaussian time domain weighting function constant, also empirically fit con-

stant;

c = Gaussian frequency domain weighting function constant;

EW = effective width of filter;

f = frequency;

ivar(n A t)= discrete time instantaneous variance series;

m, n = index counters;

N = number of signal samples;

rank(n A t) = discrete time integer ranking series;

sbar(n A t) = inverse discrete Fourier transform of Sbar(m A f) series;

Sbar(m A f) = smoothed spectral line function of z series;

Sz(m A f) = spectral line function of z series;

Szsim(in A f)=desired spectral line function series for simulation;

t = time;

T = tail function value;

ui; = 1, N = fractile value
Urn = real part of Zsim(m A f) series;

v(t) = signal function, time representation;

V(f) = signal function, frequency representation;

Vr, = imaginary part of Zsim(m A f) series;

vresid(n A t) = discrete time stationary signal series;

vsd(n A t) = discrete time standard deviation series;

vsim(n A ) = discrete time simulated signal series;

vsimres(n A t) = discrete time simulated stationary signal series;

vtrend(t) = filtered trend function, time representation;

vtrend(n A t) = discrete time trend series;

Vtrend(f)=filtered trend function,frequency representation;

Vtrend(m A f)=discrete time Fourier transform of vtrend(n A t) series;
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vvar(n A t) = discrete time smoothed variance series;

w(r) = weighting function, time domain representation;

w(n A t)= discrete time weighting series;

W(f) = weighting function, frequency domain representation;

W(m A f)=discrete time Fourier transform of w(n A t) series;

z(n A t) = discrete time standardized zscore series;

Z(m A f)= discrete Fourier transform of z series;

Zg; i = 1, N =independent standard Gaussian random variable;

zbar = mean of the zscore series;

zscore(n A t) = discrete time standardized normal score series;

zsd = standard deviation of the zscore series;

zscosim(n A t) = discrete time restandardized simulated Gaussian series;

zsim(n A t)= discrete time simulated signal series;

Zsim(m A f) = discrete time Fourier transform of zsim(n A t) series;

)= empirical distribution function;

P,- 10 = inverse empirical distribution function;

0= Fourier transform notation;

O= standard normal distribution function;
(D-1() = inverse normal distribution function;

Af = frequency step;

At = time step;
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